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Abstract A previous paper proposed a new method of 
QTL mapping called joint mapping (JM). Some problems 
have been found in model fitting and model testing due to 
the neglect of the correlations among different observa- 
tions of the dependent variable in this model. The present 
paper reports a method of solving the problems. The coef- 
ficient of correlation between two observations of the de- 
pendent variable is derived. A generalized least square 
(GLS) approach is developed for model fitting and a strat- 
egy and procedure of model testing based on a chi-square 
test is suggested. A simulated example is given. The ex- 
ample shows that the JM method is quite efficient in map- 
ping multiple linked QTLs. 
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Introduction 

Many methods for mapping quantitative trait loci (QTLs) 
have been proposed since the late 1980s. At present, the 
most widely used method is the so-called interval mapping 
(IM) procedure proposed by Lander and Botstein (1989). 
An important shortcoming of IM, however, is that the 
method often maps 'ghost' QTLs or gives biased estimates 
of the QTL's positions when there are multiple QTLs on a 
chromosome (Martinez and Curnow 1992; Zeng 1994). 
Some modifications (Lander and Botstein 1989; Haley and 
Knott 1992; Martinez and Curnow 1992; Jansen 1993; 
Zeng 1994) have been proposed to overcome these short- 
comings. Among them, the so-called composite interval 
mapping (CIM) proposed by Zeng (1994) seems to be the 
best. But all of the modified methods still follow the basic 
idea of IM; namely, using flanking markers to map QTLs. 
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Based on a quite different consideration, we have pro- 
posed a method of QTL mapping called joint mapping (JM) 
(Wu and Li 1994). The basic principle of JM is to utilize 
the linear functional relationship between the apparent ef- 
fect of a marker on a quantitative character and the sub- 
stantial effects of all the related QTLs linked to the marker. 
The linear coefficients in the function vary with the map 
distances between the marker and the QTLs. Consequently, 
each marker on the same chromosome can serve as a node 
of observation and a multiple regression analysis can be 
carried out to estimate both the positions and the effects of 
the QTLs. In principle, any number of linked QTLs can be 
mapped by JM as long as there are enough markers on a 
chromosome. 

Kearsey and Hyne (1994) have also developed a method 
of QTL mapping similar to ours. Kearsey (personal com- 
munication) made us aware of an important fact we had 
overlooked in our former paper, namely that different ob- 
servations of the dependent variable in the model (or the 
observed apparent effects of different markers) are actu- 
ally not independent of each other because all the markers 
are mutually linked. This fact implies that both the con- 
ventional least square (LS) method (Kearsey and Hyne 
1994) and the conventional weighted least square (WLS) 
method (Wu and Li 1994) are not suitable for the regres- 
sion analysis because in such cases, (1) the estimates of 
parameters (i.e. positions and effects of QTLs) are not of 
the minimum variance although they are still unbiased 
(Xiang and Wu 1989); and, particularly, (2) the asymptotic 
property of either the F statistic used in the LS (Kearsey 
and Hyne 1994) or the 22 statistic used in the WLS (Wu 
and Li 1994) method is violated (Xiang and Wu 1989; 
Kearsey and Hyne 1994) so that, strictly speaking, the sig- 
nificance thresholds calculated, based on F distribution or 
22 distribution, will no longer be correct, although the vi- 
olation might be small when the sample size is large (Kear- 
sey and Hyne 1994). Kearsey (personal communication) 
also suggested the use of empirical thresholds determined 
by Monte Carlo simulation. However, this does not seem 
to be an ideal solution for the problem because such a sim- 
ulation is model-dependent and is generally very time con- 
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suming. In the present paper we report on improvements 
to the method using another approach. 

Regression model 

yj is expected to be 

Pzj = l -2r i j .  (6) 

So, under the assumption of Haldane's map function, we 
have 

Pij  e-2D~j e-21pf - p j  I = = . (7) 

To be consistent with our former paper, a backcross pop- 
ulation (BC or FI• will be considered. For the sake of 
simplicity, epistatic effects among linked QTLs will be ne- 
glected. Suppose that there are n markers and m QTLs on 
a chromosome. In this paper, subscripts i andj  will be used 
to indicate markers, while k and I indicate QTLs. Thus, a 
multiple regression model can be constructed as follows 
(Wu and Li 1994): 

m 

Yi = IF, bk Xik -}- ei (i = 1, 2 . . . . .  n) ( 1 ) 
k = l  

in which Yi is an observed apparent effect, or the difference 
between a sample mean value of the homozygote genotype 
and that of the heterozygote genotype, of the ith marker; 
b k is the effect, or the difference between the population 
mean value of the homozygote genotype and that of the 
heterozygote genotype, of the k th QTL; e i is the random er- 
ror; and 

Xik =l--2rik (2) 

where rik is the recombination frequency between the 
ith marker and the k th QTL. rik is a function of the map dis- 
tance between the ith marker and the k th QTL, i.e. 

rik = r (Dik) = r ( [ p i -  qk I) (3) 

where Pz and qk are the position coordinates on the map of 
the ith marker and the k th QTL, respectively. Since 
pi( i=l ,2 , . . . ,n )  is known, equation (1) is a non-linear model 
with 2m unknown parameters, b k and qk (k=l,2 ..... m). 

Generally speaking, it is difficult to know the exact 
mathematical form of the function r(Dik ) in model (1). We 
have found that it is convenient to assume it to be Haldane's 
map function, i.e. 

r = l ( 1 - e  -2D) (4) 

where the unit of D is in Morgans. In such a case, from (2) 
we find 

Xik = e-2Dik = e-21pi-q~ I. ( 5 )  

Model (1) has the following properties: 

(1) According to the central limit theorem, asymptotically 
Yi ~ N(~,'ffbkXik,0-2i) or ei~N(0,0-~) (Wu and Li 1994). 
(2) 0-2 is related to rik (k=l,2,-..,m) so that it varies with 
different marker loci (Wu and Li 1994). 
(3) Since all the markers are linked to each other, there 
must be a correlation between y~ and 39 (or ei and ej) 
(i,j=l,2 ..... n; i# j ) .  We have proved (see Appendix 1) that 
theoretically the coefficient of correlation between Yz and 

Model fitting 

According to the above three properties, it is obvious that 
the joint distribution of yi s would be asymptotically a 
multi-variate normal distribution. So, the likelihood func- 
tion would be: 

1 e-�89 (Y-YB)'y-" I(y-XB) 
L = f ( Y ; X , B , Z )  - ( 2 z l E  I) n/2 (8) 

where Y is an (n x l) vector of yis; X is an (n • m) matrix of 
xiks; B is an ( m x l )  vector of bks; Z is the variance matrix 
of Y, namely, var (Y) =o-22 =Z (here 0-~ = 1). 

Z can be estimated from the sample. In fact, according 
to the definition of Yi, the variance of Yi (denoted as (7/2) 
will be =0-2]nil+0-2/ni2 , where o-21, nil and (7/22, ni2 are the 
variances and sample sizes of the homozygote and the het- 
erozygote genotypes of the ith marker, respectively, and 
both 0-/2 I and (72 can be estimated from the sample. As to 
the covariance between Yi and yj (denoted as 0-/~), it can be 
estimated either with (A1) or, more conveniently and ex- 
plicitly, with (A7) (see Appendix 1), in which rij can be 
calculated from marker linkage maps constructed in the 
same experiment or in others. We prefer using formula (A7) 
to estimate 0-~. 

Since Z can be estimated in advance, I ZI becomes a 
constant in (8). Thus, maximizing the value of L in (8) is 
equivalent to minimizing the value of 

R S S  = ( Y - X B ) ' Z - I ( y - X B ) .  (9) 

This is actually the generalized least square (GLS) method 
(Xiang and Wu 1989). 

When the positions of putative QTLs, qk (k=l,2,-..,m), 
are given, (1) becomes a multiple linear regression model. 
In this case, (9) has an analytical solution (Xiang and Wu 
1989): 

B = (XtZ- 1X)- 1 x ' ~ l  Y (10) 

and the least RSS under the condition of given qk s can be 
calculated by substituting (10) back into (9). That means 
that, as a matter of fact, the function (9) only depends on 
the variables qk (k=l,2 ..... m). So, a strategy to approach 
the point of least RSS can be: choose a set of initial values 
of qks; then search for q~ in proper order by iteration until 
convergence. 

Under the assumption of Haldane's map function, the 
calculation of (10) and (9) will be simplified because, ac- 
cording to (7), Pij has the following property 

Pij =Pi, i+I Pi+l,i+2.. �9 Pj-I,j (i <j) 
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which makes Z -1 to be a symmetric tri-diagonal matrix, of 
which the elements of main diagonal and secondary diag- 
onals are 

2 2 
1 - Pi-l,i Pi,i+l (i = 1, 2 .. . .  n) 

~ (1-/32_1,i)(1 -- Pi,i+,2 )C~2i 
and 

-Pi,i+l (i = 1, 2 .. . .  n - 1) 
13 i = (l_pi2i+1)~io.i+l 

respectively, where Pox=Pn,~+l=0. 

Model testing 

Table 1 Results of sampling of RSS with 500 simulations (see text). 
Notes for the symbols: NP=number of parameters in the model; 
MRS S=mean of RSS; VRSS=variance of RSS; exp=expected by the 
theoretical (chi-square) distribution; sam=sampled; GF=goodness of 
fit 

Sample size 100 1000 

Model Null-QTL One-QTL Null-CTL One-QTL 

NP 0 2 0 2 

MRSS exp 5 3 5 3 
sam 5.010 3.127 4.940 3.061 

VRSS exp 10 6 10 6 
sam 10.464 6.119 10.320 5.626 

GF Z 2 7.00 3.06 11.06 8.25 
df 12 9 12 9 
P> 0.75 0.95 0.50 0.50 

It is known that, for a linear regression model, the RSS of 
2 = 1) follows asymptotically a chi- GLS (in the case of o- e 

square distribution and that the estimates of parameters in 
the model are of the minimum variance (Xiang and Wu 
1989). In this case, model testing will be simple. Unfortu- 
nately, model (1) is non-linear, so whether the conclusion 
from a linear model applies to it needs to be examined. 
Hence, we conducted a simulation study. 

We assumed that on a chromosome there are five mark- 
ers, evenly spaced with a distance of 5 cM, but no QTLs; 
the random error e i (i =1,2,-.-,5) follows a standard normal 
distribution N(0,1). Two sample sizes, 100 and 1000, were 
considered; 500 samples were generated for each case. 
Both null-QTL and one-QTL models were used to analyze 
the data. The results are listed in Table 1. 

These results clearly indicate that for model (1), the RS S 
of GLS (in the case of o-2 --1) also asymptotically follows 
a chi-square distribution, of which the degrees of freedom 
is given by n - 2 m ,  i.e. 

R S S  (In) -zZ(n-2m) (11) 

where n is the number of markers observed and m is the 
number of QTLs assumed in the model. Consequently, the 
estimates of parameters must be of  minimum variance. 
When m is equal to, or larger than, the real number of QTLs 
on the chromosome, the chi-square distribution would be 
central, otherwise it would be non-central. In addition, ac- 
cording to the additivity of chi-square variables, it can be 
inferred immediately from (11) that 

R S S  (m) - R S S  (m + 1) - Z  2 (2). (12) 

Obviously, the chi-square distribution in (12) will be cen- 
tral when m is equal to, or larger than, the real number of 
QTLs. 

According to (11) and (12), we can find criteria for test- 
ing the model and a corresponding strategy for identifying 
the best model. Two steps are involved. First, find the mod- 
els fitted to the data in accordance with the following con- 
dition: 

R S S  (m) <~ Z 2 ( n -  2m)  (13) 

where ~ is the significance level. Then use the following 
criterion 

RSS  (m) - R S S  (m + 1) >Z~ (2) (14) 

to identify the best one among the models which meet con- 
dition (13). If  inequality (14) is true, then one more QTL 
needs to be assumed in the model. Otherwise the m-QTL 
model would be the best one. A series of tests may be car- 
ried out successively until no more QTLs can be added to 
the model. 

The determination of significance levels in ( t 3) and (14) 
is worthy of discussion. When several chromosomes are 
examined in an experiment, for the test based on condition 
(13), the probability of refusing a correct model but ac- 
cepting an alternative model with an additional assumed 
QTL(s) will increase; and similarly, for the test based on 
criterion (14), the probability of accepting a false QTL(s) 
into the model will also increase. Thus, the overall result 
will be that the risk of mapping false QTLs increases. 
Therefore, higher significance levels in both (13) and (14) 
would be required. Considering that different chromo- 
somes are independent, we suggest that the nominal sig- 
nificance level for individual tests be calculated with the 
following formula 

o~=1- (1-  ~0) 1/C 

where c~ o is the overall significance level required and c is 
the number of chromosomes being analyzed. 

In regard to the confidence interval of a QTL's position 
(qk), similar to that presented in the former paper (Wu and 
Li 1994), it can be determined by 

RS S  (m[ qk) -- RS S  (m) <~ Z~  ( l )  

where R S S ( m  I qk) is the minimum R S S  depending on qk. 

Example 

To illustrate the procedure ofJM, a simulated example will 
be given here. Consider a chromosome, 150 cM long, with 
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Table 2 Results of JM model fitting 

Model df RSS P(Z 2 >RSS) 

Null-QTL 16 55.645 <0.001 
One-QTL 14 39.007 <0.001 
Two-QTL 12 28.494 <0.005 
Three-QTL 10 19.950 <0.05 
Four-QTL 8 4.511 >0.75 

Table 3 Estimates of parameters obtained by the four-QTL model 

QTL no. Position (cM) Effect 95% Confidence 
interval (cM) 

1 7.8 0.727 2-17 
2 44.7 -0.783 37-54 
3 93.2 0.792 84-99 
4 123.7 -0.950 119-129 

16 evenly spaced markers and 4 QTLs, of which the posi- 
tions (cM) and effects are 7 and 0.45; 44 and-0.65;  95 and 
0.55; 129 and -0.5,  respectively. The residual variance 

2 Gres=l. A sample with 250 individuals was generated. 
A series of models with from 0 to 4 assumed QTLs were 

fitted (Table 2). The results strongly indicate that there 
must be 4 QTLs on the chromosome. The estimates of pa- 
rameters by the 4-QTL model are listed in Table 3, and the 
curves of RSS (m] q ~ ) - R S S  (m) - q~ (k=l  ..... 4) are given 
by Fig. 1 (a), which intuitively illustrates the estimated po- 
sitions of the 4 QTLs and their corresponding 95% confi- 
dence intervals. From both Table 3 and Fig. l(a), we see 
that the estimates of  the QTL's positions are satisfactorily 
precise although the estimates of the QTL's effects are 
larger than their real values. This example shows that JM 
is quite efficient in mapping multiple linked QTLs. 

To provide a preliminary comparison of the power of  
QTL mapping, the methods of IM and CIM were also used 
to analyze the data. The results are shown in Fig. l(b). For 
convenience of comparison, the likelihood ratio (LR) 
rather than LOD was used as the statistic in IM. The LR 
threshold of 5% overall significance level for IM is =7.00, 
which was calculated by conversion from the equivalent 
empirical LOD threshold (=1.52) obtained by Lander and 
Botstein (1989) for the case of mapping a single 100-cM- 
long chromosome on which markers are spaced evenly 
with a distance of 10 cM. Since the chromosome in this 
example is longer than 100 cM, and thus there are more 
marker intervals to be analyzed, the appropriate LR thresh- 
old may be a little larger than 7.00. The LR threshold of 
5% overall significance level for CIM is =8.50, which was 
calculated based on the assumptions (Zeng 1994) that the 
LR statistic follows a chi-square distribution with 1 degree 
of freedom and that the tests on individual intervals be ap- 
proximately independent. 

We see from Fig. l(b) that only one (the 4 th) QTL was 
detected by both IM and CIM (the corresponding estimates 
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Fig. 1 a, b Results of QTL mapping of the simulated example (see 
text) with JM, IM and CIM. The vertical short bars on the bottom 
indicate the positions of markers. The black triangJes indicate the 
real positions of QTLs. a JM: curves of RSS(mlqk)-RSS(m)-q~ 
(k=l,-..,4). The lowest point of each curve indicates the most prob- 
able position of a ~TL. The horizontal dotted line shows the signif- 
icance threshold Z o.o5 (1)=3.84, below which the range of each curve 
defines a 95 % confidence interval of the corresponding QTL's posi- 
tion. b IM and CIM: LR scores varying along the chromosome 

of position and effect of the QTL were 127 cM and -0.57 
by IM and 124 cM and -0.978 by CIM, respectively). The 
results show that both IM and CIM are not as efficient as 
JM in QTL mapping in this example. Certainly, this does 
not mean that JM would be better than IM and CIM in every 
case. But the example at least indicates that the power of 
JM should be comparable to those of currently widely used 
QTL mapping methods based on flanking-marker analy- 
sis. More comparative studies are needed to provide fur- 
ther knowledgeon this point. 

D i s c u s s i o n  

In the above discussion, only a backcross population was 
involved. But the results can be directly applied to a dou- 
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bled haploid (DH) population. It is also applicable to a pop- 
ulation of recombinant inbred lines (RIL) except that some 
modifications are needed because, in a RIL population, the 
proportion of recombinants (R) of two linked loci does not 
equal the corresponding recombination frequency (r) but 
equals to 2r/( l+2r)  (Haldane and Waddington 1931). 
Therefore, for a RIL population, the parameters r in model 
(1) must be replaced by R and the coefficient of correla- 
tion between Yi and y j  becomes Pij=l-2Rij.  Interestingly, if 
we assume Kosambi's map function (Kosambi 1944) 

1 e 2D - e -2D 

2 e 2D + e -2D 

and let D* = 2D, then we find 

/ 
which has the same form as (4). In such a case, therefore, 
the calculation of (10) and (9) can also be simplified. 

In the above discussion, epistatic effects among linked 
QTLs were ignored. But in principle, the method of JM ap- 
plies to the situation when there are epistatic effects. Fol- 
lowing the digenic interaction system of polygenes de- 
scribed by Mather and Jinks (1982), we have found that, 
for DH and RIL populations, when epistatic effects 
between two linked QTLs are taken into account, the form 
of model (1) will not be influenced, whereas for a BC pop- 
ulation two new terms related to epistatic effects will ap- 
pear in model (1). The two terms are: 

~ (1 - r/k - r/l ) (aakl - ddkl) (15) 
k<i=2 

and 

~ (ri~ - ril) (adzk - a d k l )  (16) 
k<l=2 

where subscripts i, k and 1 denote the ith marker and the k th 
and the ith QTLs, respectively; a denotes the additive ef- 
fect, d denotes the dominance effect, aa, ad and dd denote 
epistatic effects of a x a, a x d and d x d, respectively. If it is 
assumed that adtk=adkl, then term (16) will be eliminated 
so that there will be only one epistatic effect term in the 
model. This is what we have presented in the former paper 
(Wu and Li 1994). 

Although epistatic effects can be included in the model, 
both model fitting and model testing will then become more 
complicated, and the precision of mapping may be reduced, 
too. In fact, for the sake of simplicity, epistatic effects are 
generally assumed to be negligible in most of the current 
methods of QTL mapping. However, if epistatic effects ac- 
tually exist and are significant, then they should be con- 
sidered. Since our first purpose is to map QTLs rather than 
estimate the interactive effects among the QTLs, an ideal 
situation would be that epistatic effects can be omitted from 
the model of QTL mapping whether or not they exist. From 
this point of view, the DH and RIL populations are better 
than that of BC for QTL mapping. 

Appendix 1 

Assume that the ith and the  jth markers are linked to each 
other with a recombination frequency r~j. Let n denote the 
number of individuals, fi denote the sample mean and 0 -2 
denote the variance of the sample mean of a genotype; sub- 
scripts 1 and 2 indicate the homozygote genotype and the 
heterozygote genotype of a marker, respectively; N denotes 
the total number of individuals of the sample. Then, in ac- 
cordance with the result of Appendix 2, we have 

C O  V ( y i ,  Y j ) .= C O  V (~lil - ].ti2 , ]..l j l  - ~l j2  ) 

= c o v ( ~ i ~ , ~ j ~ ) -  c o v ( ~ a , & 2 )  

- C O V ( ~ i 2 ,  ~ j l  ) + C O V ( ~ i 2 ,  ~ j 2  ) 

nil  j l  nil  j2  
- -  l ~ i n i l n j l  (Yil(Yjl , •ilCYj2 .~/ni 1 n j  2 

n i2 j l  n i2 j2  _ _. 
i CYi2CYjl -.k ~ o i 2 o j 2  

.~; tTi2njl \; n i 2 n j 2  

(A1) 

where COVdenotes  co-variance. (A1) is a general formula 
for calculating COV(yi,Yj). But theoretically, for a BC pop- 
ulation, it is expected that 

=!X nil  = hi2 = n j l  = n J2 2 

1 (1 -  r~)N n o l j l  ---- n i2 j2  = 

1 
nil j2 = ni2 jl = ~ rij N 

1 (72 ~ 2  = (722 = 2 i 

1 (72 o2, =o22--  j 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

where cr 2 and o -ff have the same meaning as in the text. So, 
by substituting (A2)-(A6) into (A1) we have 

1 (3" COV(y i ,Y j )  = 1 ( 1 -  rij)a i crj - ~Yij i CYj 

_ 1 + 1 ( 1  - - ~rij a~ aj  ~ ~j)a~ CY j 

= (1-2~j)o-i  cyj. 

(A7) 

Hence, we find that the expected coefficient of correlation 
between Yi and yj is 

P i j = l -  2rij. 

Appendix 2 

Assume that there are two random variable sets X and Y. 
There is a random sample with size n obtained from set un- 
ion X u Y, in which the numbers of variables sampled from 
X, Y and set intersection Xc~Y are n x, ny and nxy , respec- 
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t ively.  Let  Y and y denote  the mean  values  of  var iables  
sampled  f rom X and Y. Then,  we have 

COV( Y , Y )= COV(  I ~  ~, ~ 
I nx i=I Xi'n~s-.  

I~ x l~y 

-- Z Z COV(xi 'Yj)  
/~x gty i=1 j=l 

nx /~y 

- -  Z Z Pi j  Cri (T j .  
n x ny i=1 j=l 

Because 

{~ when x i and yj are the same variable 

Pij = when x i and yj are different variables 

we get 

COV(2, y ) nxy 
~[nxny fix ~Yy 

and 

nxy 
Px,y -- _U~_ " 

.~l nxny 
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